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The asymptotic form at the front for reflected and head waves is constructed in the problem of the 
reflection of a cylindrical, horizoutally polarized, shear wave (a so-called SH-wave) from the interface 
between two homogeneous isotropic hereditary-elastic half spaces which are joined to one another 

and for which the heredity kernels are assumed to be regular. This problem is solved here by the 

generalized Cagniard4e Hoop (CH) method which is an improved form of the approach proposed in 

[l). Unlike [l], in the generalization of the CH method proposed here, it is not necessary for the 

memos fiction to be the same in ail of the layers of a laminar medium. 

The solution of this problem was obtained in [Z] in the purely elastic case using the classical 
CH method. It should be noted that the results in this paper could also have been obtained by 
another method which rest on the results in [3] where the high-frequency asymptotic form of 
the potential of the reflected and refracted waves was constructed for the case of a harmonic 
source. However, straightforward derivation of the asymptotic forms at the front based on the 
generalization of the CH method presented in this note turns out to be simpler. 

3. Inxyz space (with the Z-axis directed vertically downwards), consider two homogeneous isotropic 
heredita~~l~tic half-spaces which are rigidly joined to one another along the surface z = 0, We recall 

that, in a homogeneous isotropic hereditary-elastic medium, the operational shear modulus u* defies (in 

the case of pure shear) the following relation between the stresses and strains 

Q* =2/E* =2p0(1-Q(f)*)EiC 

Here CL” =const is the instantaneous shear modulus, Q(f) is the shear relaxation kernel, which is equal 

to zero when t > 0, and an asterisk in a row denotes convolution with respect to t (the notation of [l] is 

used). 
We shall therefore assume that the half-space z<O possesses a density pr and a shear modulus 

cr: = &(l -Q,(f)*) while the half-space possesses a density pt and a shear modulus u; = &(l -QZ(t)*). We 
assume that the relaxation kernels Q,(f) 3 0 are regular, that is, they possess finite limits when t -+ +O. At 
the same time we assume that, when I > 0, the expansions 

Qj(t)=Qj(o)+ I: Kjktk 

k>1 

are valid (here and subsequently, we shall write Q,(O) instead of Q,(+O), for brevity). 
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Suppose a linear source 

f=(O,A6(x)6(z-b)6(t),O); zo co 

acts in the upper half-space. 
Such a source only excites the y-component of the displacement (which we shall denote by u). It is clear 

that l)=(x, z, t) in the problem being considered. The equations for 2) in the corresponding half-spaces 
have the form 

p,a*w at* = A6(x)6(t-#i(r)+~;Av, z<O 

p2a2wat2 =&AU, z>o 
(1.1) 

where A is the Laplace operator in x and z. Here, we assume that 

u=O when t<O 

Next, the stress 6, is related to the displacement u by the formulae 

o,=$waz, ZCO; 0,=p&h. 0-0 

The condition of continuity of the stresses on the boundary z = 0 therefore takes the form 

$V t azi,=,_ = P& 1 azl,,,, 

Finally, the condition of continuity of the displacements has the form 

(1.2) 

(1.3) 

(1.4) 

2. Let us apply a double Fourier-Laplace transformation X, t + 5, s to problem (l.l)-(1.4) 

=j e-%x. j e-“dt 
-00 0 

As a result, problem (l.l)-(1.4) reduces to matching the solutions of ordinary differential equations 
with respect to z. It can be verified that the solution of thii problem has the form 

1 
A 

MS.z.4 = 2flt(s)nt 
exp[-n,lz-~il+u~(~,r,s), z<o 

U&ZJ). z>O 

Here 

"j =<5* +S*/B:(S))“*, Renj ,O 

(24 

(2.2) 
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(k_, and k,, are the reflection and transmission coefficients). 

Below, notation is also needed for the instantaneous elastic velocities of the shear waves l3; = (py /p,“F. 
It is clear that 

Bj(S)=P~(1-QjCS))1'2 (2.3) 

Henceforth, we shall consider the case when 

S:: >I$ (2.4) 

which, in the problem in question, corresponds to the occurrence of head waves. It obviously follows 

from (2.4) that 

&(S)>&(J) when s + + 0 (25) 

3. We will confine ourselves to investigating the wave reflected from the boundary in the half-space 

z < 0, that is, to investigating the function u,&, Z,S) defined in (2.1). We apply an inverse Fourier trans- 
formation with respect to x to the expression for u,,(& z,s) and then introduce a radial parameter p using 
the same formula as in the purely elastic case [2]; 5 = isp. Now, using the notation 

qj Z@;*(S)-p*f’*, Reqj a0 

we note that (for purely imaginary p) the real part of the integrand for Q(X, z , s) is an even function of 
p, while the imaginary part is an odd function of p . We therefore obtain 

(3.1) 

We also note that, henceforth, during the deformation of the integration contour in (3.1), it is necessary 

to take account of the cuts 

which are made along the Rep axis and are connected with the requirement that Req, a 0, Rerh 2 0. 

4. We will introduce the real variable r, 0 c r c 0 and, for each s = const > 0, we consider the equation 

T=px+q,lz+~l (4.1) 

It can be shown that one of the solutions of Eq. (4.1) for p has the form 

K= 

i 
-1, 0<14Rg/Br(S) 

i, s>&JlfJ(s) 

2 l/2 
4) =1x2 +(t+q)) 1 

(4.2) 

The quantities x and z are considered here as fixed parameters and the parameter s > 0 is also fixed. 
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We shall refer to the contour p = p,(z), defined by formulae (4.2), as the generalized Cagniard contour for 
Q. The variable z plays the same role in (4.2) as the time t in the corresponding formulae of the classical 
CH method for purely elastic media. Note that, in (4.21, the “similar to time” variable z and the Laplace 
variable s occur s~ultaneously. 

Let us denote the part of the geneml~ed Cagniard contour (4.2) lying in the half plane Rep 2 0 by C,. 
As in the classical CH method [2], we conclude that formula (3.1) can be rewritten in the form 

(4.3) 

5. To fii our ideas, let x >O. It is then obvious from (4.2) that the contour C, departs from the Re p 
axis at the point 

Let us assume that 

Then, for large s > 0, the point (5.1) lies to the left of both the cuts (3.2) which have been made in the 
half plane Re p > 0, that is 

As is shown below, satisfaction of the inequality (5.2) means that x is smaller than the critical distance 
at which a head wave is observed. 

If condition (5.2) is satisfied then, for large s > 0 in the segment C, lying on the Rep axis, the integrand 
in (4.3) is real and, consequently, makes no contribution to the expression for vrar. Hence, for large s > 0, 
it may be assumed that z > &i&(s) in (4.3). Next, we have 

Hence, for large s > 0, (4.3) acquires the form 

(5.4) 

6. We will now calculate the asymptotic form at the front u,,(x, z, I), assuming that condition (5.2) is 
satisfied. To do this, we make the following substitution in (5.4) 

By virtue of (2.3) 

expt-n#$ I fil (s)] = e-jy expt-zQt(0)/2~1+0(s-‘)) 

Now, from (5.4), we obtain 
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s++- (6.2) 

I$ CT) - r(f$)” - p?. (t)P2 

Guided by the uniqueness theorem for the representation of a Laplace transform, we conclude that, 
close to the front of the reflected wave (that is, when t + I$/# +0) 

(6.3) 

It is seen that the exponential factor, determining the decay at the front, does not contain the quantity 

Q,(O). Expression (6.3) therefore corresponds to a wave which only propagates in the half space z < 0. 

7. Now let 

X~Ro4%$ (7.1) 

Then, the point j5,, at which the contour C, leaves the Rep axis (see (5.1)) satisfies the inequalities 

that is, for large s > 0, it lies between the ends of the cuts (3.2) located in the half plane Rep > 0. Then, for 

large s > 0, and in the rectilinear segment [l/g,(s), F,] of the contour C,, the quantity qz = [&*(s)- p2]l’* 

turns out to be purely imaginary. Unlike (5.3), for large s > 0 in the indicated segment of the contour C,, 
we have 

(7.3) 

Now, substituting (5.3) and (7.3) into (4.3), we obtain, for large s > 0 

-ST 
e 

b [$ /pf(s)-T2f2 (7.4) 

Here, the quantity z, is determined from (4.1) where p has to be replaced by l/g,(s) 

r, =x/~2(s)+[~;~(s)-~;~(s)l~‘~lz+~I 

Furthermore, when z > &, 1&(s) by definition we assume that 

(75) 

(7.6) 

We now introduce the notation 

7u =x/~~+[(Bp)-2-~B~)-211’21z+~I 

(As will become clear below, t = z0 is the time of arrival of the head wave at a point (x, y, z).). Making the 
substitution z + it, /z, when s + +m we transform relation (7.4) into 

Now, by taking account of the fact that, for large s > 0 

(7.7) 
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we obtain from (7.7) the required frontal asymptotic form of the head wave (t + r0 + 0) 

Here, we assume that x > 0 and, moreover, that relationship (7.6) is satisfied. It is obvious that (7.8), 
unlike (63, is a wave which has passed through both media. It is clear that the distance traversed by this 
wave through the lower medium is equal to x-l t + z,, I (p,” /pfy - 1)-1’2. 

8 FinaIIy, the case when /3: = ff but B,(s) e b,(s) (for example, in a ray s,, < s < -) is interesting. To be 
specific, let x > 0. It is clear that x/& c 1 everywhere. The case (5.2) is thereby realized, while the case 
(7.1) is impossible, that is, there is no head wave in the problem in question. 
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